
www.elsevier.com/locate/ijmulflow

International Journal of Multiphase Flow 31 (2005) 675–705
Volume averaging for the analysis of turbulent spray flows
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Abstract

Spray flow calculations are usually based upon equations that have been developed by averaging droplet
properties locally throughout the flow field. Presently, standard procedure for LES (large-eddy simulations)
is to average these averaged equations once again to filter the short-length-scale fluctuations. In this paper,
the theoretical foundations for the averaged spray equations are examined; then the volume-averaging pro-
cess for LES and the volume-averaging process for two-phase flows are unified for the analysis of turbulent,
two-phase flows. Comments are provided on the relationship between the averaging volume and the com-
putational-cell volume. This paper provides generality to the weighting-function choice in the averaging
process and precision to the definition of the volume over which the averaging is performed. New flux terms
that result from the averaging process and appear in the governing averaged partial differential equations
are identified and their modelling is discussed. Situations are identified where sufficient stratification of
properties on the scale smaller than the averaging volume leads to the significance of these quantities. Evo-
lution equations for averaged entropy and averaged vorticity are developed. The relationship amongst the
curl of the average gas-phase velocity, the average of the gas-phase-velocity curl, and the rotation of the
discrete droplets or particles is established. The needs and challenges for sub-grid modelling to account
for small-vortex/droplet interactions are presented. Applications to spray combustion are discussed.
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1. Introduction

In both laminar and turbulent spray flow computations that relate to practical situations, it is
usual to have flow regions with many more droplets than the achievable number of computational
cells. Therefore, we normally define an ‘‘average’’ droplet for each locality that has properties
which are representative of the droplets in its neighborhood. Although the volume defining the
neighborhood for droplet-property averaging is arbitrary, it is rational to make the averaging vol-
ume of the order of the computational-cell volume; resolution is lost by both the averaging pro-
cess and the computational discretization, so resolution is not gained by making one scale smaller
than the other. The length scale for the averaging volume (and therefore for the computational
mesh) should be orders of magnitude larger than the droplet diameter or the average spacing be-
tween droplets. If each of these droplet length scales were at least an order of magnitude larger
than the mesh size, the fields within and around the droplets can be resolved; so there is no point
in using average quantities. If the droplet scales and mesh size were comparable, very few droplets
are involved in the averaging process and very large fluctuations in the average quantities can be
expected.

After this averaging, we have two continua overlaying each other. The two-phase-flow equa-
tions have been in use for decades, especially for sprays; see the overviews by Spalding (1980)
and Sirignano (1972, 1986, 1999). They were first used by Crocco and Cheng (1956) and Crocco
et al. (1962) in the study of combustion instability in liquid-propellant rocket motors. Williams
(1962, 1985) presented a derivation of these equations using droplet distribution functions. Both
gas and liquid properties are averaged over a neighborhood so that, regardless of whether liquid
or gas exists at a particular point in space at a particular instant, both gas-averaged properties and
liquid-averaged properties will have continuous values at that point and instant. If we categorize
our droplets into many classes (determined for example by initial size, velocity, or composition or
by point of injection) and average over each class, there will be a separate continuum for each
class plus a continuum for the gas. This is named a multi-continua approach (Sirignano, 1999).
The gas-phase continuum is normally solved using an Eulerian formulation for the governing
equations while either Lagrangian or Eulerian formulations have been employed for the droplet
equations.

The dynamical and thermal behavior of the liquid internal to the droplets, the gas films sur-
rounding the droplets, and the gas regions between neighboring droplets cannot be resolved by
solely computational means since they occur on sub-grid scales. So, modelling of those sub-grid
phenomena is required. A discussion of the extensive literature on models for droplet dynamics,
heating, and vaporization can be found in Sirignano (1999).

Spray flow science can be considered as part of a broader science named two-phase flows which
includes additionally suspensions, bubbly flows, dusty flows, and porous flows. Overviews of this
field can be found in Soo (1967), Wallis (1969), Marble (1970), Bear (1972) and Drew (1983).
Various portions of our analysis will resemble or reproduce elements in the literature; however,
significant distinctions occur because of the attempt here to unify the averaging method for
two-phase flows with averages constructed for turbulent flows and for computational purposes
and because of the special distinctions of rapidly vaporizing, high-liquid-mass sprays. Our interest
in sprays is primarily related to liquid–fuel combustion which has some characteristics (Sirignano,
1999) that demand special analytical treatment: the mass and momentum of the liquid (discrete
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phase) can be within an order of magnitude of the values for the gas (continuous phase) although
the volume fraction of liquid is orders of magnitude smaller; the vaporization time scale in the
high-temperature environment can be as small as or smaller than the times for the liquid droplets
to reach kinematic or thermal equilibrium with the gas; the Reynolds number (and Peclet number)
based on relative gas-droplet velocity and droplet dimension can be of O(10) to O(100) causing
substantial stratification and large gradients within the gaseous microstructure surrounding drop-
lets thereby requiring more information than mere averages of the microstructure field; droplet
vaporization and heating rates can depend on internal spatial and temporal variations of liquid
temperature, composition, and velocity thereby requiring more resolution than simply average
properties; and the smallest turbulent length scales can be as small as the droplet size. In the appli-
cations of interest, the exchanges of mass, momentum, and energy between the phases will all have
highly significant impacts.

Important contributions to the theory of averaging for two-phase flows can be found in the pa-
pers of Gray and Lee (1977), Prosperetti and Jones (1984), Zhang and Prosperetti (1994a,b, 1997),
Bulthuis et al. (1995) and Prosperetti and Zhang (1995). A discussion emphasizing vaporizing
sprays is given by Sirignano (1999). Drew and Passman (1999) give a very broad and detailed
overview of averaging methods for multi-component flows; they discuss ensemble-averaging by
various methods: constructing a large number of realizations, volume-averaging, and time-aver-
aging. For our purposes, volume averaging has some critical advantages and will be used. Since
spatial averaging or filtering methods are widely used by the turbulence community in their large
eddy simulations (LES), the treatment of turbulent spray flows integrates better with those studies
if spatial averaging is used. Furthermore, we will be interested in unsteady flows so time averaging
will not be useful. Finally, we ultimately will solve difference equations rather than differential
equations. Finite-volume methods involve averaging over the computational-cell volume and
its surfaces. In other numerical differencing methods there is an implied spatial averaging; so, if
we used another averaging method for the two-phase character, we are effectively applying two
averages to the equations with no particular gain.

Important developments in large-eddy simulations (LES) and so-called ‘‘direct numerical sim-
ulations’’ (DNS) for particle-laden turbulent flows have been made in recent years. See Squires
and Eaton (1991), Elghobashi and Truesdell (1992, 1993), Wang and Squires (1996), Boivin
et al. (1998), Druzhinin and Elghobashi (1998, 2001), and Ferrante and Elghobashi (2003). Useful
overviews of LES methods for single-phase flows are provided by Piomelli (1999) and Givi (2003).
Some recent applications of LES methodology to spray combustion problems are addressed by
Sankaran and Menon (2002a,b). The turbulent-flow community is well aware of the important
relationship between the volume of the computational cell and the length scales for the phenom-
ena which are filtered or averaged.

Generally, the literature on the development of the averaged equations for two-phase flows
(Sirignano, 1999; Gray and Lee, 1977; Prosperetti and Jones, 1984) has not been specific about
the volume size or shape to define the neighborhood over which averaging occurs. In particular,
the relationship between the averaging process for multi-fluid flows and the high-wavenumber
filtering process for turbulent flows, as well as the relationship between the computational-cell
shape and size and the shape and size of the averaging volume, have not been well treated
yet. Nor has the error been fully evaluated for the common gas-phase approximation that the
volume average of a product equals the product of the volume averages; the impact of this on
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highly-stratified-flow microstructures will be shown to have potential importance. A substantial
amount of research by Prosperetti and co-workers (Zhang and Prosperetti, 1994a,b, 1997; Bul-
thuis et al., 1995; Prosperetti and Zhang, 1995) is based upon multi-realization ensemble averag-
ing rather than volume averaging. The literature on LES for single-phase flows (Piomelli, 1999;
Givi, 2003) also discusses the process of averaging over a neighborhood to create a new contin-
uum and modified governing equations. They tend to refer to the averaging process as a ‘‘filter-
ing’’ process since they filter out the portion of the spectrum associated with smaller length scales.
In principle, of course, averaging and filtering are the same here. The spray researchers can learn
from the LES researchers who do address the specification of the averaging-volume size and shape
and the modelling and evaluation of the difference between the average of a product and the prod-
uct of the averages. Here, we will attempt to make that advance first for laminar spray flows and
then for turbulent spray flows.

Researchers have begun to treat turbulent spray and particle-laden flows using either LES or
DNS. Particle-, droplet-, or bubble-laden flows in cases of homogeneous turbulence (Elghobashi
and Truesdell, 1992, 1993; Boivin et al., 1998; Druzhinin and Elghobashi, 1998; Ferrante and El-
ghobashi, 2003), temporal mixing layers (Ling et al., 1999), and spatially developing mixing layers
(Druzhinin and Elghobashi, 2001) have been treated by DNS. The LES approach has been used
for turbulent, particle-laden channel flow (Wang and Squires, 1996) and turbulent combustion
(Sankaran and Menon, 2002a,b). Both DNS and LES analyses typically begin with equations that
treat the droplet and gas properties as continuous variables. So, an implicit averaging has been
made on the droplet scale. Then, for LES, another averaging (or filtering) is performed explicitly
to avoid resolution of the smallest scales of turbulence. The modelling of the droplet behavior has
neglected any direct interaction of small eddies with the droplets. Rather, the resulting equations
are based implicitly on the assumption that the smallest eddies of the turbulence are larger than
the largest droplet scales. Here, we will attempt to unify the droplet averaging process and the
LES length-scale filtering process into one process. We will discuss the implications of the situa-
tion where the smallest eddy scales are comparable to the droplet scales.

The so-called DNS calculation of spray or particle-laden flows is also built upon modified equa-
tions for the flow. (For that reason, this author finds the ‘‘DNS’’ label inappropriate for its cur-
rent use in two-phase flow calculations.) Whether the droplets are averaged together as a group
and represented by an average droplet or they are represented individually as point (monopole)
sources, there is a loss of resolution on the scale of the droplet and its surrounding film. So,
the ‘‘DNS’’ calculations require modelling of the behavior at the droplet scales and implicitly
are restricted to situations where the smallest eddy scales are at least an order magnitude larger
than the droplet scales. Many interesting situations, particularly in practical combustors, involve
comparable sizes for droplet scales and the Kolmogorov scale of turbulence. For these situations,
current ‘‘DNS’’ and LES methods would both be inadequate.

Recent work by Archambault et al. (2003a,b) extends the probability density function approach
of Williams (1962, 1985). It differs from the approach of this paper in that it relies on multi-real-
ization ensembles thereby not unifying LES and two-phase-flow averaging processes. Also, it ne-
glects the effects of heat and mass exchanges between the phases.

The next section presents the basic equations governing the gas and liquid phases of the flow.
Then, the averaging process is defined and the averaged equations are developed for each phase.
The liquid-phase equations are also presented in Lagrangian form. Computational implications
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are discussed. In the following section, certain newly identified (at least within the spray literature)
flux terms in the equations, each related to the difference between an average of a product and a
product of the averages, are analyzed and quantified using simplistic models of the flow on the
scale smaller than that of the averaging volume (i.e., sub-grid scale or microstructural scale).
The microstructural behavior and analytical challenge are discussed for laminar flows, for flows
where the smallest turbulent eddy is larger than the microstructure, and for flows where the small-
est turbulent eddies appear in the microstructure.
2. Development of the averaged equations

2.1. The primitive equations

The primitive equations are the well known conservation equations for a multi-component,
chemically reacting, unsteady, three-dimensional gas phase. The overall gas-phase continuity
equation is
oq
ot

þ oðqujÞ
oxj

¼ 0 ð1Þ
q, ui, t, and xi are the density, ith component of velocity, time, and ith Cartesian space coordinate,
respectively. The species continuity equation for any of the N gaseous species can be written as
oðqY nÞ
ot

þ oðqY nujÞ
oxj

þ oðqY nV n;jÞ
oxj

¼ qxn; n ¼ 1; . . . ;N ð2Þ
Yn, Vn,i and xn are the mass fraction, ith component of mass-diffusion velocity, and the chemical
reaction rate, respectively, for the nth species. For cases where Fickian diffusion can be assumed
for multi-component diffusion in a gas dominated by one particular species (e.g., nitrogen), we
have
V n;i ¼ �Dn

Y n

oY n

oxi
ð3Þ
where Dn is the mass diffusivity for the nth species. The momentum equation is
oðquiÞ
ot

þ oðquiujÞ
oxj

þ op
oxi

¼ osij
oxj

þ qgi ð4Þ
p, sij, and gi are the pressure, viscous stress tensor, and ith component of the gravitational accel-
eration, respectively. The following form of the energy equation will be used:
oðqhÞ
ot

þ oðqhujÞ
oxj

þ
oqj
oxj

¼ op
ot

þ uj
op
oxj

þ Uþ
XN
n¼1

qxnQn ð5Þ
where h is the specific enthalpy, Qn is the chemical heating value (simply the negative of the heat of
formation) of the nth species, and the viscous dissipation and the heat-flux vector are given by
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U ¼ sij
oui
oxj

ð6Þ
and
qi ¼ �k
oT
oxi

þ qrad;i þ
XN
n¼1

qV n;ihnY n ð7Þ
The quantities k, T, qrad,i, and hn represent the thermal conductivity, temperature, radiative heat
flux, and specific enthalpy of species n, respectively. So, the first term in Eq. (7) is the Fourier heat
conduction while the third term is the heat flux created by the mass diffusion of species with dif-
fering specific heats.

We will consider a perfect gas so that
p ¼ qRT ð8Þ

where R is the gas ‘‘constant’’ that actually can vary in a multi-component flow due to its molec-
ular-weight and mass-fraction dependencies.

The combined First and Second Laws of Thermodynamics lead to a differential relationship for
an element of mass, Williams (1985); T ds ¼ dh� ð1=qÞdp �

PN
n¼1endY n where s is the specific en-

tropy and en is the internal energy (without the energy of formation) of the nth species. Note that
the last term on the right side goes to zero when the specific heats of all species have the same
value at any given temperature. This equation can be recast in terms of Lagrangian time deriva-
tives following the mass element and combined with Eqs. (1) and (5) to yield
q
os
ot

þ uj
os
oxj

� �
¼ oðqsÞ

ot
þ oðqujsÞ

oxj
¼ p

T
ouj
oxj

þ qcv
T

oT
ot

þ uj
oT
oxj

� �
¼ 1

T
�
oqj
oxj

þ Uþ
XN
n¼1

qxn½Qn � en� þ
XN
n¼1

en
oðqV n;jY nÞ

oxj

( )
¼def R1

T
ð9Þ
In the special case where the specific heats of all species have the same value, the simplification
results that
R1

T
¼ 1

T
�
oqj
oxj

þ Uþ
XN
n¼1

qxnQn

( )
ð10Þ
The same Eqs. (1)–(9) will apply for the liquid phase with the exceptions that xn, for any liquid-
phase species, and qrad,i will be zero and liquid density will be constant. The set of N species will
include any species which appears in at least of one of the two phases. The liquid-phase dependent
variables will carry a special subscript to distinguish them from the gas-phase variables. We will
have, for example, ul,i, ql, Yl,n, Vl,n,i, pl, sl,ij, hl, ql,i, Ul, Tl, and hl,n.
2.2. Averaging of dependent variables

Let us consider the variable hð~x; tÞ to have a value of unity in the gas phase and zero in the
liquid phase. h has been named a characteristic function or a component indicator function (Drew
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and Passman, 1999). The function was introduced as a void-volume-distribution function in a ser-
ies of papers on porous flows (Whitaker, 1966, 1967) that used volume averaging over the micro-
structure that included both the solid porous material and the fluid in the pores. A spatial
derivative of h is therefore zero everywhere except at a liquid/gas interface where it is a Dirac delta
function. Note that the time derivative will be zero except at a moving interface. We now define a
weighting factor Gð~x�~nÞ for the averaging of quantities over the neighborhood of any particular
point~x at any particular instant t;~n varies to identify the points in the neighborhood of the point
~x.~x and~n have the same reference origin so that~x�~n is a relative position. G depends only on the
relative position; it does not separately depend on~x or~n. Nor does it have a temporal dependence.
We also require that
Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~nÞd~n ¼ 1 ð11Þ
where d~n ¼def dn1 dn2 dn3. Three examples of symmetric choices for G are
G ¼def
3

4pa3 if 0 6 j~x�~nj 6 a

0 if j~x�~nj > a

(
ð12Þ

G ¼def
1

8abc if � a 6 x1 6 a;� b 6 x2 6 b;� c 6 x3 6 c

0 if otherwise

�
ð13Þ
and
G ¼def 1
2

b
p

� �3=2

e�bj~x�~nj2 ð14Þ
In the choice presented by Eq. (12) or (13), the spherical or rectangular volume is named the aver-
aging volume. In the choice given by Eq. (14), the integration should be performed over the infi-
nite domain. If the exponential function is ‘‘clipped’’ to become zero outside of some finite
symmetrical domain (such as a sphere or rectangular box) centered at the point~x, the constants
in the G function must be adjusted to satisfy Eq. (11). The domain where the clipped G is positive
is named the averaging volume for this case. One could proceed with an infinite averaging volume
but, as we noted, there is disadvantage in making the averaging volume larger than the compu-
tational cell volume. The choice of Eq. (13) is commonly used for LES computations and fits well
with a rectangular gridding scheme.

Note that, in the above examples, two types of symmetry are displayed for the function G: for
spherical symmetry, Gðj~x�~n jÞ ¼ Gðj~n�~x jÞ while, for symmetry about each of three orthogonal
planes, G(x1 � n1,x2 � n2,x3 � n3) = G(n1 � x1,x2 � n2,x3 � n3), G(x1 � n1,x2 � n2,x3 � n3) =
G(x1 � n1,n2 � x2,x3 � n3), and G(x1 � n1,x2 � n2,x3 � n3) = G(x1 � n1,x2 � n2,n3 � x3). In the
following analyses, the results still apply for either symmetry type. Furthermore, the condition
of symmetry of G is not required. The results in this paper would still apply, for example, if the
point~x were not in the center of the averaging volume or if the averaging volume had a non-sym-
metric shape.

Gð~x�~nÞ has three important properties that will be useful in this analysis. They apply for either
symmetric or asymmetric G functions. One is the condition that oG/oxi = �oG/oni. This condition
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will be valuable in determining the average value of a spatial gradient. Another property is that
G! 0 as j~x�~nj ! 1. The third property is that it has units of reciprocal volume (reciprocal
length cubed) and is normalized so that, when used as a weighting factor in an integration over
the volume, it maintains the proper dimensional units and implicitly divides the integral by the
weighted volume. The importance of the constraints on the choice of G has been well recognized
by researchers in the LES field but not as well recognized by two-phase flow researchers. Define
the void volume (fraction of volume occupied by gas) as
hð~x; tÞ ¼def
Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~nÞhð~n; tÞd~n ð15Þ
The overbar implies an average over the volume. Clearly, the volume fraction occupied by liquid
will be
1� hð~x; tÞ ¼ 1� hð~x; tÞ ¼
Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~nÞð1� hð~n; tÞÞd~n ð16Þ
In averaging the gas-phase flow variables, some variables will be averaged with normalized den-
sity in the weighting factor while others will be averaged without the use of density. The choice of
whether or not to use density weighting for any particular variable here follows conventional
practice, is intended to produce the simpler form of the averaged equations, and is based upon
how the specific term appears in the governing equations. When density-weighting is used, the
averaging is over the mass rather than simply the volume; this is known as Favre-averaging. Note
that the two types of averaging (volume and Favre) produce identical results for the situation
where density is uniform such as we shall see later for the averaged liquid-phase equations.

The average gas density will be
qð~x; tÞ ¼def
Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~nÞhð~n; tÞqð~n; tÞd~n ð17Þ
The scalars Yn, h, and xn and the vector ui are averaged with a mass (Favre) weighting. If w is a
generic scalar or vector, we obtain
qð~x; tÞwð~x; tÞ ¼def qð~x; tÞhwð~x; tÞi ¼def
Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~nÞhð~n; tÞqð~n; tÞwð~n; tÞd~n ð18Þ
Here, the brackets h i will be used below to denote a mass-weighted average of a property or of
the product of properties. Now, consider qYnui, qYnVn,i, and qhui. If we take the product of a sca-
lar w and a vector wi, we obtain
qð~x; tÞwð~x; tÞwið~x; tÞ ¼def qð~x; tÞhwð~x; tÞwið~x; tÞi

¼def
Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~nÞhð~n; tÞqð~n; tÞwð~n; tÞwið~n; tÞd~n ð19Þ
The mass-weighted average of the product of two velocity vectors produces the tensor
qð~x; tÞuið~x; tÞujð~x; tÞ ¼def qð~x; tÞhuið~x; tÞujð~x; tÞi ¼def
Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~nÞhð~n; tÞuið~n; tÞujð~n; tÞd~n

ð20Þ
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For variables such as U, qi, p, and the viscous stress tensor sij, the averaging is performed with a
volume weighting to obtain
Uð~x; tÞ ¼def
Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~nÞhð~n; tÞUð~n; tÞd~n ð21Þ

qið~x; tÞ ¼def
Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~nÞhð~n; tÞqið~n; tÞd~n ð22Þ

hð~x; tÞbpð~x; tÞ ¼def pð~x; tÞ ¼def
Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~nÞhð~n; tÞpð~n; tÞd~n ð23Þ
and
hð~x; tÞbsijð~x; tÞ ¼def sijð~x; tÞ ¼def
Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~nÞhð~n; tÞsijð~n; tÞd~n ð24Þ
The averages for pressure and viscous stress indicated by the ‘‘hat’’ symbol differ from the others
with the explicit appearance of �h in order to facilitate below the collection of terms that contribute
to the aerodynamic forces on the droplets. In the case of Fickian diffusion, it follows from Eq. (3)
that the integral in Eq. (19) becomes the average of the triple product of density q, mass diffusivity
D, and the gradient of mass fraction oYn/oxi. Furthermore, if the product qD were constant, the
integral becomes the product of qD and the average gradient.

The average values for the liquid properties are obtained by using the liquid-properties fields

and replacing hð~n; tÞ by ½1� hð~n; tÞ� in the integrands of Eqs. (17)–(24). Also, hð~x; tÞ is replaced

by ½1� hð~x; tÞ� in Eqs. (23) and (24). For the constant-density liquid considered here, there is
no distinction in the results between volume-weighted averages and mass-(Favre-) weighted aver-
ages. So, only the overbar is used to indicate liquid-property averages. We will not write those
liquid-phase relations here because they are obvious.

The application of boundary conditions will present some problems. The specified value of
a flow variable at a boundary is not exactly equal to the average value of that variable in a
neighborhood adjacent to the boundary. So, some higher-order error is made when that condi-
tion of equality is applied. It will not be a problem if the weighting factor G is non-zero outside
of the boundary provided that the flow variables are prescribed to be zero outside of the
boundaries.
2.3. Averaging of derivatives

The relationships between the volume average of the derivative of a dependent variable and the
derivative of a volume-averaged dependent variable was shown for porous flow problems by Whi-
taker (1966, 1967) and Slattery (1967). Later, Whitaker (1973) extended the treatment to multi-
phase systems with mass exchange. In those early works, G was not identified but implicitly
was set equal to unity over the averaging volume. The possibility of volume changes with ~x
was not considered. The time derivative of any averaged (scalar, vector, or tensor) gas-phase
quantity / can be related to the average of the time derivative as
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o/ð~x; tÞ
ot

¼
Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~nÞhð~n; tÞ o/ð

~n; tÞ
ot

d~n

¼ o

ot

Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~nÞhð~n; tÞ/ð~n; tÞd~n

�
Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~nÞ ohð

~n; tÞ
ot

/ð~n; tÞd~n ð25Þ
So, recognizing that h will change with time only because droplet motion, distortion, vaporiza-
tion, or condensation causes the gas/liquid interface to move, we can relate the time derivative
of h to the velocity of the interface as
ohð~n; tÞ
ot

¼ �uh;j
ohð~n; tÞ
onj

ð26Þ
where uh,i is the ith component of the normal interface velocity. With n taken as the local normal
coordinate at the surface, ohð~n; tÞ=on is a Dirac delta function; so, the three-dimensional integral
can immediately be integrated to give a two-dimensional surface integral over all interfaces in the
averaging volume. The result is that
o/ð~x; tÞ
ot

¼ o/ð~x; tÞ
ot

þ
Z
S

Z
Gð~x�~fÞ/ð~f; tÞuh;jð~f; tÞdAj ð27Þ
Here, dAi is the ith component of the normal interfacial area vector, pointing into the continuous
phase (gas), and the~f vectors are the subset of ~n vectors that locate points on the interfaces. In
Eqs. (25)–(27), / can be a scalar, vector, or tensor.

Let us now examine the average of a spatial derivative. Again, / can be a scalar, vector, or
tensor.
o/ð~x; tÞ
oxi

¼
Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~nÞhð~n; tÞo/ð

~n; tÞ
oni

d~n

¼
Z 1

�1

Z 1

�1

Z 1

�1

o½Gð~x�~nÞhð~n; tÞ/ð~n; tÞ�
oni

d~n

�
Z 1

�1

Z 1

�1

Z 1

�1

oGð~x�~nÞ
oni

hð~n; tÞ/ð~n; tÞd~n�
Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~nÞohð

~n; tÞ
oni

/ð~n; tÞd~n

¼ 0þ o

oxi

Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~nÞhð~n; tÞ/ð~n; tÞd~n�

Z
S

Z
Gð~x�~fÞ/ð~f; tÞdAi ð28Þ
The first integral on the right side is zero because G! 0 as j~x�~n j! 1. So, we have
o/ð~x; tÞ
oxi

¼ o/ð~x; tÞ
oxi

�
Z
S

Z
Gð~x�~fÞ/ð~f; tÞdAi ð29Þ
The computational cell in a calculation need not be identical in shape to the averaging volume but
should have the same approximate magnitude for volume since the largest volume determines the
resolution for the problem. The averaging volume is distinct from the computational volume in
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principle since there are an infinite number of averaging volumes (before discretization of the dif-
ferential equations into difference equations), one corresponding to each point in space, while a
finite number of computational cell volumes exist. In other words, averaging volumes can overlap
each other while cell volumes cannot. Of course, in practice, there is no advantage to considering
more than one point for each computational cell since resolution cannot be improved by consid-
eration of more points. So, after discretization, the number of averaging volumes engaged in the
calculation equals the number of cells.

If, for convenience, averaging volumes are made identical to computational cell volumes in
uniform-sized Cartesian grids, the averaging-volume shapes can be symmetric types such as the
rectangular boxes considered with Eq. (13), all volume sizes would be uniform. However, with
non-uniform Cartesian grids, cylindrical or spherical grids, and unstructured grids, including
finite elements, the size and shape of the averaging volume would change if it were set equal to
the computational cell volume locally. In some situations, the averaging volume might be varied
spatially because the computationally resolved, physical-length scales vary. The spatial variation
means that G ¼ Gð~x;~x�~nÞ; namely, a separate dependence on~x appears which modifies the gra-
dient formulation from the form given by Eqs. (28) and (29). An option is to correct Eqs. (28) and
(29) and the resulting conservation equations to account for a variation in the averaging volume.
For example, suppose we have a non-uniform or unstructured grid and use G = 1/V where V is
the averaging volume which is now a function of~x. Then, Eq. (29) is modified to be
o/ð~x; tÞ
oxi

¼ o/ð~x; tÞ
oxi

þ oðlog V Þ
oxi

/ð~x; tÞ �
Z
A�

Z
/ð~g; tÞhð~g; tÞ 1

V
onð~gÞ
oxi

dA� �
Z
S

Z
1

V
/ð~f; tÞdAi

ð30Þ
where A* is the external surface area of the averaging volume, ~g is a vector locating a point on
that surface, and n is the positive-outward length extension of that surface locally as V
changes with ~x. The second and third terms on the right side are the result of the variation in
the volume. The second term is caused by the change in the magnitude of G over the volume
as Eq. (11) is obeyed. The other term results from the change in the domain of the integration.
They can be combined easily into one term when the rate of local volume change is uniform over
the bounding surface of the averaging volume. That is, on/oxi is uniform over the surface. Then,
we obtain
o/ð~x; tÞ
oxi

¼ o/ð~x; tÞ
oxi

þ oðlog V Þ
oxi

f/ð~x; tÞ � /Sð~x; tÞg �
Z
S

Z
1

V
/ð~f; tÞdAi ð31Þ
where the average of / over the bounding surface is given by
�/S ¼
1

A�

Z
A�

Z
/ð~g; tÞhð~g; tÞdA� ð32Þ
The new term can be zero in special cases, e.g., when / is uniform over the boundary and equal to
�/, but generally it is not zero. The problem with this situation is that a model for the value of / on
the volume boundary is needed. If the averaging volume were a sphere centered at~x, the use of the
mean-value theorem (see p. 276 of Courant and Hilbert, 1962) leads to the conclusion that
�/� �/S ¼ OðR2r2/Þ where R is the sphere radius. This implies that the ratio of the second term
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on the right side of Eq. (31) to the first term on that side is O(R2/(L1L2)). Here, L1 is the physical
length scale for change in / and L2 is the designed numerical length scale for change in the aver-
aging volume. We can expect this order of magnitude to remain the same if the averaging volume
is not spherical. So, clearly if L2 is chosen to be too small (i.e., change in volume size is too abrupt)
significant errors can occur if the second term on the right side of Eq. (31) is not considered. Note
that this need for correction would apply to any calculation with averaging, including single-phase
LES calculations as recognized by Ghosal and Moin (1995). There also has been recognition of
the potential for error by the computational-fluid-dynamics community. See, for example, pp.
60–63 of the second volume of the book by Fletcher (1991) where non-uniform grids are dis-
cussed. It is known that if computational mesh size varies too abruptly with position, errors
can be introduced that are of first order in an otherwise second-order-accurate differencing
scheme.

Independence of grid size is a necessary condition. For calculations with filtering or averaging,
this condition should be interpreted as the requirement that, for two averaging-volume choices
with mesh lengths that are of the same order of magnitude (e.g., a factor of two difference is
the standard test), the two computations should agree for the portion of the spectrum with length
scales larger than the larger of the two filtering lengths for the two choices. That is, only the mutu-
ally unfiltered portion can be expected to agree. Clearly, independence of grid size depends not
only on the correct choice of grid size but also on the correct choice of sub-grid models, since grid
size can quantitatively affect the sub-grid model.

2.4. Averaged gas-phase equations

We will now multiply each one of Eqs. (1), (2), (4), (5) and (8) by the product Gh and integrate
term-by-term over the volume. The relations given by Eqs. (15)–(24), (27) and (29) will be used to
substitute for the various integrals. Then, some rearrangement of terms will be made to yield the
averaged equations. Finally, we obtain the averaged gas-phase continuity equation
o�q
ot

þ oð�qhujiÞ
oxj

¼ _M ð33Þ
and the averaged gas-phase species continuity equation
oð�qhY niÞ
ot

þ oð�qhY nihujiÞ
oxj

þ oð�qhY nihV n;jiÞ
oxj

¼ �qhxni þ _M�n þ
oð�qan;jÞ
oxj

þ
oð�qbn;jÞ
oxj

n ¼ 1; . . . ;N

ð34Þ

In these equations, we have used the definitions
_M ¼def
Z
S

Z
Gð~x�~fÞqð~f; tÞ½ujð~f; tÞ � uh;jð~f; tÞ�dAj ð35Þ

_M�n ¼def
Z
S

Z
Gð~x�~fÞqð~f; tÞY nð~f; tÞ½ujð~f; tÞ � uh;jð~f; tÞ þ V n;jð~f; tÞ�dAj ð36Þ

an;i ¼def hY nihuii � hY nuii ð37Þ
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bn;i ¼def hY nihV n;ii � hY nV n;ii ð38Þ
Note that ½ujð~f; tÞ � uh;jð~f; tÞ� in Eqs. (35) and (36) is the relative velocity of the gas at the liquid
surface, so, the normal component of this velocity is the Stefan velocity at the surface caused by
the vaporization (or condensation). Therefore, _M is the total vaporization rate per unit volume
due to all of the droplets in the neighborhood. �n is the fractional vaporization rate of the nth spe-
cies. Models for _M and �n (for situations where the smallest scales of turbulence are larger than the
droplet scales) can be found (Sirignano, 1999) and will not be discussed further here. The quan-
tities, an,i and bn,i, require modelling and will be discussed later.

A Reynolds-stress term will appear in the momentum equation. It is given as
Cij ¼def huiihuji � huiuji ð39Þ
With the use of Eq. (15), it can be shown that
o�h
oxi

¼ �
Z 1

�1

Z 1

�1

Z 1

�1

oGð~x�~fÞ
ofi

hð~f; tÞd~f ¼
Z 1

�1

Z 1

�1

Z 1

�1
Gð~x�~fÞ ohð

~f; tÞ
ofi

d~f

¼
Z
S

Z
Gð~x�~fÞdAi ð40Þ
Now following Prosperetti and Jones (1984), a portion of the terms related to the averaged viscous
stress and pressure can be combined to yield Fi, the aerodynamic force (per unit volume) on the
droplets,
F i ¼def
Z
S

Z
Gð~x�~fÞ ½sijð~f; tÞ � dijpð~f; tÞ� � ½bsijð~x; tÞ � dijbpð~x; tÞ�n o

dAj ð41Þ
dij is the Kronecker delta symbol. Models for Fi, including models for unsteady effects, can be
found in the literature and will not be discussed here. See, for example, Sirignano (1999).

The term representing the momentum exchange between the phases associated with vaporiza-
tion (condensation) is an integral over the liquid surface of the product of the local vaporiza-
tion rate per unit area and the velocity of the gas at the surface. If the difference between
the liquid velocity and the gas velocity at the surface is small compared to the droplet velocity,
this term can be modelled as the product of the global vaporization rate and the average
droplet velocity. Even if the velocity difference at the surface is not small compared to the
droplet velocity, there should be substantial cancellation from the integration of the relative
velocity vector over the closed surfaces of the droplets. Therefore, we have for the vaporization
case
 Z

S

Z
Gð~x�~fÞqð~f; tÞuið~f; tÞ½ujð~f; tÞ � uh;jð~f; tÞ�dAj ¼ _M�ul;j ð42Þ
where �ul;i is the averaged liquid velocity. In the condensation case, �ul;i should be replaced by huii.
So, the gas-phase momentum equation can be cast as
oð�qhuiiÞ
ot

þ oð�qhuiihujiÞ
oxj

þ �h
op̂
oxi

¼ �h
oŝij
oxj

þ �qgi � F i þ _M�ul;j þ
oð�qCijÞ
oxj

ð43Þ
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In his porous flow analysis, Whitaker (1967) found the an,i term which he named a dispersion vec-
tor. bn,i did not appear because Fickian diffusion was assumed. Inertial effects were neglected so
the Cij term was not developed in the porous-flow analyses. Whitaker (1973) also neglected the
inertial effects in the more general multi-phase systems transport study. Most of the terms in these
equations have been recognized before for spray flows, bubbly flows, and particle-laden flows (Sir-
ignano, 1999). However, the last two terms in Eq. (34) and the last term in Eq. (43) are new terms
for spray flow theory. They have been recognized in turbulent flow theory but we shall see how
stratification in the microstructure for laminar two-phase flows can make these terms significant.
For the development of the averaged energy equation, we note that the term that gives the rate of
energy exchange (per unit volume) with the droplets due to heat conduction, mass transfer, and
radiation can be modelled (Sirignano, 1999) as
Z

S

Z
Gð~x�~fÞfqð~f; tÞhð~f; tÞ½ujð~f; tÞ � uh;jð~f; tÞ� þ qjð~f; tÞgdAj ¼ _M ½hhg;si � Leff � ð44Þ
where hhg,si and Leff are the averaged specific gas enthalpy at the liquid surface and the heat
per unit mass for vaporization and interior heating of the droplet, respectively. Leff is the
sum of the latent heat of vaporization L and ð _Ql= _MÞ where _Ql is the heating rate of the droplet
interior.

Now, we define
S� ¼def
Z
S

Z
Gð~x�~fÞfpð~f; tÞ � bpð~x; tÞguh;jð~f; tÞdAj ð45Þ
Here, uh;jð~f; tÞdAj is the rate of change of infinitesimal volume due to liquid–gas interface motion.
After weighting with G and integrating over all liquid–gas interfaces in the volume, the negative of
the time derivative of the void volume is obtained. So, if a droplet is locally in a spherically sym-
metric situation relative to the surrounding gas, this droplet�s contribution to the S* integral is
proportional to the product of the pressure difference and the time derivative of the ratio of
the droplet volume to the averaging volume. If there is only a Stefan velocity in the region and
no imposed velocity, the gas velocity decreases with distance from the droplet and gas pressure
increases with that distance. So, the differential surface pressure in the integral for S* is negative.
In this case, the S* term represents differential pressure work done on the gas by the liquid which
is changing volume. For vaporization (condensation), it is positive (negative) and acts as an en-
ergy source (sink) for the gas. The difference in pressure appears in the S* term because of the def-
inition of the average pressure given by Eq. (23).

For a translating particle with fore-and-aft symmetry in the surface-pressure distribution and
without volume change or shape distortion, S* = 0. If the flow separates over the translating par-
ticle, the integral for S* is not equal to zero and work is done on the gas by the particle or on the
particle by the gas. The fore-aft orientation and therefore the orientation of the net pressure drag
force on the particle are determined by the vector huii � �ul;i and not by �ul;i alone. So, if the dot
product �ul;iðhuii � �ul;iÞ is negative, the particle is moving in a direction opposed to the net force
and a positive value appears for S*. That means that the particle is doing work on the continuous
fluid (gas). If the dot product is positive, the integral is negative and work is done on the particle.
The order of magnitude of the S* term here will be given by the combined pressure-drag force of
all particles in the averaging volume times the average particle velocity divided by the averaging
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volume. Interestingly, it is not the total drag that contributes to this work term; the friction acts
parallel to the surface, so, unlike the pressure, it does no work as the infinitesimal element of sur-
face area sweeps over an infinitesimal volume.

These simple understandings about the pressure work can guide the creation of a model for the
evaluation of S*. For example, we can add the two effects discussed above to yield
S� ¼
1

4�qs

_m
4pR

� �2
Dð�hÞ2

Dt
� 3ð1� �hÞ

8�hR
�qCDp jhui � �ulj�ul;jðhuji � �ul;jÞ ð46Þ
where _m is the vaporization rate of an average droplet, R is the instantaneous droplet radius, the
time derivative following the gas is Dð Þ=Dt ¼ oð Þ=ot þ ~ujoð Þ=oxj, and CDp is the coefficient of
pressure drag for the droplet. It is only suggested here that this model is worthy of testing, it is not
endorsed yet. The S* term is the flux of a velocity-squared term so it should be of the order of
Mach number squared times a thermal flux term such as the divergence of Ei; so, for low-speed
subsonic flows, it can be negligible.

Now, the averaged gas-phase energy equation becomes
oð�qhhiÞ
ot

þ oð�qhujihhiÞ
oxj

þ
o�qj
oxj

� �h
op̂
ot

þ huji
op̂
oxj

� �
¼ �Uþ

XN
n¼1

�qhxniQn þ _M ½hhg;si � Leff � þ S� � Dþ oð�qEjÞ
oxj

ð47Þ
where
D ¼def huji�h
op̂
oxj

� uj
op
oxj

ð48Þ

Ei ¼def huiihhi � huihi ð49Þ
The last four terms in Eq. (47) have not been recognized for spray flows before. The last term has
been used in the turbulence community.

The averaged gas-phase equation of state may be expressed as
�hp̂ ¼ �qhRT i ¼ �q½hhi � hei� ð50Þ

where e is the specific internal energy. Note that for a multi-component mixture ~h and ~e must
eventually be related to the average temperature eT and the average mass fractions eY n, presenting
another closure challenge. If the energy equation is re-formulated using Eq. (8) so that hei be-
comes the dependent variable instead of hhi, it will be seen that the total pressure at the droplet
surface is critical in determining pressure work associated with volume change of the phase. This,
of course, is consistent with the First Law of Thermodynamics.

The gas-phase species continuity equations, momentum equation, and energy equation can
individually be placed in non-conservative form by combination of Eqs. (34), (43), or (47) with
Eq. (33).

Of course, the same physics would be represented by the two-step averaging process, if the sub-
grid models were of high fidelity in both the one-step and two-step approaches. However, fidelity
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of the sub-grid modelling is the problem with the two-step approach. Also, the same final
forms for the species conservation equations, momentum equation, and energy equation
would not be obtained in a two-step averaging process. If the first step averaged over drop-
let scales only but neglected turbulent fluctuations of smaller scale in the sub-grid model, the
same forms as Eqs. (34), (43) and (47) would result after this first step with the same formal
definition of the new flux terms. However, there would be obviously be differences in the
modelling of the flux terms if turbulent fluctuations were not considered until the second step.
The second averaging over the turbulent scales would produce still more flux terms because of
the non-linearities. It would clearly be difficult to model the interactions between the smaller tur-
bulent eddies and the droplets if the droplet physics had already been averaged and modelled in
the first step. The results of the two-step averaging would also be different in the reverse situation
where the turbulent-scale averaging and modelling were performed first, followed by the droplet-
scale averaging and modelling. So, the one-step averaging offers the opportunity to model the
droplet-scale physics, the smaller-eddy physics, and their interactions together with fewer flux
terms.
2.5. Averaged vorticity and entropy

We can divide the non-conservative form of the momentum equation by the average density
and then take the curl to yield an evolution equation for the average vorticity Xi which is here
the curl of the mass-weighted average velocity and not the volume-weighted average of xi, the curl
of velocity. The relationship between the two averages is given by
�xi ¼ �ijk
ouj
oxk

¼ �ijk
o�uj
oxk

� �ijk

Z
S

Z
Gð~x�~fÞujð~f; tÞdAk

¼ Xi þ �ijk
oð�uj � hujiÞ

oxk
� �ijk

Z
S

Z
Gð~x�~fÞujð~f; tÞdAk ð51Þ
where the permutation symbol �ijk = 0 if two or three indices are identical, +1 if the indices reflect
an even permutation of 123, and �1 if the indices reflect an odd permutation of 123. Part of the
distinction (between the curl of the average velocity and the average of the curl) disappears if the
integral of the cross-product of the normal surface vector and the tangential velocity vector over
the droplet surface is zero. For a solid particle with no slip at the surface and no rotation, the
surface velocity is the velocity of the particle�s mass center and its tangential component varies
from zero to the particle velocity value. The contribution of that particle to the surface integral
in Eq. (51) becomes zero. If the particle is rotating in addition to translating, the surface integra-
tion, for that particle alone, of the cross-product of that tangential velocity and the normal surface
vector will have a non-zero contribution whose value is proportional to the angular velocity and
to the ratio of the particle�s volume to the averaging volume. For a liquid droplet with internal
circulation and/or a distortion that is symmetric about an axis, the surface integration will pro-
duce a zero value.

As noted by Sirignano (1972), the droplet aerodynamic force term and the droplet momentum
source term will produce or modify the average vorticity even in the case of barotropic flow, neg-
ligible shear forces (away from the droplet surfaces), and zero initial vorticity. Our modification
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here indicates that Cij will also affect average vorticity Xi. The resulting vorticity evolution equa-
tion will be
oXi

ot
þ huji

oXi

oxj
¼ Xj

ohuii
oxj

� Xi
ohuji
oxj

� �ijk
oð�h=�qÞ
oxk

op̂
oxj

þ �ijk
�h
�q

o2ŝjr
oxk oxr

þ oð�h=�qÞ
oxk

oŝjm
oxm

� �
� �ijk

oF j

oxk
þ _M

ohuji
oxk

� o�ul;j
oxk

� �
þ o _M

oxk
fhuji � �ul;jg

� �
þ �ijk

o2ð�qCjrÞ
oxk oxr

ð52Þ
An alternative choice of a method that obtains �xi directly is to combine the primitive equations
(1) and (4) to obtain a non-conservative form, divide the result by density, then take the curl term-
by-term to yield an evolution equation for xi, and finally perform the volume averaging. Thereby,
it would be necessary to evaluate more product terms; so, this author prefers the other route out-
lined above.

Sirignano (1972) also obtained an evolution equation for the average entropy by combining the
momentum and energy equations, neglecting some terms of the order of the Mach number
squared (as appropriate for the combustion instability application of that publication) and assum-
ing the same value of specific heat for each species. It was shown that the droplet interactions (ex-
change of mass and energy between the phases) produce entropy even in the absence of chemical
reaction, heat and mass diffusion, and viscosity. Now, we improve on the accuracy of that rela-
tionship by averaging Eq. (9), still neglecting any variation in the specific heats across the species.
The inclusions of the new terms and the higher order (in Mach number) effects now cause the
averaged entropy conservation equation to be
oð�qhsiÞ
ot

þ oð�qhujihsiÞ
oxj

¼
Z
S

Z
Gð~x�~fÞðuj � uh;jÞqsdAj þ

oð�qHjÞ
oxj

þ R1eT þ J ð53Þ
where based on the analysis of the averaged energy equation, we have
R1 ¼ �
o�qj
oxj

þ Uþ
XN
n¼1

�qhxniQn � _MLeff ¼def R2 � _MLeff ð54Þ
Furthermore, we define
Hi ¼def huiihsi � huisi ð55Þ
and
J ¼def R1

T

� �
� R1

hT i ð56Þ
The integral in Eq. (53) reflects an entropy flux associated with mass transfer from the discrete
phase. We can model that integral as _Mhsg;si where the subscripts imply the quantity is evaluated
in the gas phase at the interface between the phases.

The averaged entropy conservation equation can be combined with the averaged continuity
equation to obtain an averaged entropy-evolution equation.
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�q
ohsi
ot

þ �qhuji
ohsi
oxj

¼ _M hsg;si � hsi � Leff

hT i

� �
þ oð�qHjÞ

oxj
þ R2

hT i þ J ð57Þ
A reasonable model for the averaged entropy difference is
hsg;si � hsi � Leff

hT i ¼
hhg;si � hhi � Leff

hT i ð58Þ
Clearly, now the effect of mass and energy exchanges between the phases as indicated by
_M ½hhg;si � hhi � Leff � is seen to affect entropy production.

2.6. Averaged liquid-phase partial differential equations

The averaged equations for the liquid phase can be developed by multiplying every term in Eqs.
(1)–(7) by the product of G and (1 � h). For the constant-density liquid, mass weighting and vol-
ume weighting produce the same average. First, we obtain the averaged liquid-phase continuity
equation
o�ql

ot
þ oð�ql�ul;jÞ

oxj
¼ � _M ð59Þ
Next, the averaged liquid-phase species continuity equation can be written. The Gauss divergence
theorem will show that there will be a contribution to the divergence of qlY l;nV l;n;i coming only
from the portions of the boundary of the averaging volume that intersect the volumes of droplets
located on the boundary. A large Peclet number can be considered, liquid-phase mass diffusion is
slow compared to advection of the liquid-phase species across the averaging-volume boundaries.
Therefore, we can neglect this diffusion contribution compared to other terms for spray applica-
tions. (Liquid-phase mass diffusion might be important, however, for some other multi-phase
application.) The average diffusion flux goes to zero. So, it can be shown that
qlY l;nV l;n;i ¼ �qlY l;nV l;n;i ¼ �qlY l;nV l;n;i � �ql
�bl;n;i ¼ 0 ð60Þ
It follows that
oð�qlY l;nÞ
ot

þ oð�qlY l;n�ul;jÞ
oxj

¼ � _M�l;n þ
oð�qlal;n;jÞ

oxj
; n ¼ 1; . . . ;N ð61Þ
The averaged liquid-phase momentum equation for the vaporizing case is
oð�ql�ul;iÞ
ot

þ oð�ql�ul;i�ul;jÞ
oxj

þ ð1� �hÞ op̂l
oxi

¼ ð1� �hÞ oŝl;ij
oxj

þ �qlgi þ F i � _M�ul;i þ
oð�qlCl;ijÞ

oxj
ð62Þ
Note that the next-to-last term in Eq. (62) must be modified to read _Mhuii for the case of conden-
sation. This momentum equation can be developed further by making a standard assumption that
the gradient of the averaged pressure and the gradient of the averaged viscous stress tensor at any
point ~x are identical for the two phases. Note that capillary effects can prevent the matching of
pressure and viscous stress across the gas/liquid interface. Capillary pressure causes a jump in
pressure across the interface, however, for spherical droplets, that jump quantity is uniform along
the interface; so, the pressure gradients on the two sides match. If surface temperature and/or sur-
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face composition varies along the surface, viscous stress can jump across the interface and the
pressure jump can become non-uniform along the surface. However, if the droplet interior field
is axisymmetric, these effects average to zero effect on the gradients. Solving for these gradients
from Eq. (43) and substituting into Eq. (62), we find
oð�ql�ul;iÞ
ot

þ oð�ql�ul;i�ul;jÞ
oxj

¼ 1� �h
�h

�q
Dhuii
Dt

þ �ql � �q
1� �h
�h

� �
gi þ

F i

�h
� _M

�ul;i
�h

� 1� �h
�h

huii
� �

þ oð�qlCl;ijÞ
oxj

� 1� �h
�h

oð�qCijÞ
oxj

ð63Þ
For the liquid-phase energy equation, we can again use the Gauss divergence theorem to show
that there will be a contribution to the divergence of �ql;i coming only from the portions of the
boundary of the averaging volume that intersect the volumes of droplets located on the boundary.
We can consider this contribution to be negligible compared to other terms for spray applications.
This could be important, however, for some other multi-phase application. The averaged liquid-
phase energy equation can now be written as
oð�ql
�hlÞ

ot
þ oð�ql

�hl�ul;jÞ
oxj

¼ ð1� �hÞ o�pl
ot

þ �ul;j
o�pl
oxj

� �
þ Ul � Sl;� � Dl � _M ½hhg;si � Leff � þ

oð�qlEl;jÞ
oxj

ð64Þ
Again, the last term in Eq. (61), the last term in Eq. (62), and the last three terms in Eq. (64) have
not been recognized for two-phase flows before. The equations are constructed so that energy flux
into the droplet surface from the gas (or work done by the gas on the droplet surface) does not
necessarily equal in magnitude the energy flux into the liquid (or work done on the liquid) because
capillary action causes a pressure jump across the interface and surface energy can change as the
droplet size, shape, temperature, and/or composition change. Sl,* is determined by a modified
form of Eq. (45) with the surface pressure defined on the liquid side of the interface and the aver-
age pressure is the average for the liquid phase. Due to the capillary actions, these liquid-pressure
values will be higher than the corresponding gas-pressure values indicated in that equation. So,
while a positive S* represents work (per unit volume per unit time) done on the gas by the differ-
ential pressure at the gas side of the interface as the liquid volume changes, it is not generally equal
to the value of Sl,* which represents work done by the differential pressure force on the liquid side
of the interface. The difference is caused by the integral of the product of interface velocity uh,j and
the difference between the local capillary pressure at the surface and the average capillary pres-
sure. In the special case of spherical droplets, uh,j and the capillary pressures are uniform in mag-
nitudes over the interface with the average and local capillary pressures equal, so, the difference
between S* and Sl,* disappears.
2.7. Averaged liquid-phase Lagrangian equations

In developing the Lagrangian form of the equations, we define the time derivative following the
liquid dð Þ=dt ¼ oð Þ=ot þ �ul;joð Þ=oxj. The liquid density is considered to be constant so that
�ql ¼ ½1� �h�ql.
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Recognizing that, for constant liquid density, �ql ¼ ql½1� �h� ¼ nqlV drop where nð~x; tÞ is the drop-
let number density and V dropð~x; tÞ is the average droplet volume, we may construct two other
equivalent forms of the liquid-phase continuity equation:
d�h
dt

¼ � oð1� �hÞ
ot

þ oðð1� �hÞ�ul;jÞ
oxj

¼
_M
ql

ð65Þ
or
dV drop

dt
¼ oV drop

ot
þ �ul;j

oV drop

oxj
¼ �

_M
qln

¼ � _m
ql

ð66Þ
where _mð~x; tÞ is the mass vaporization rate of an average droplet. In the last equation, it has been
assumed that the total number of droplets is conserved, i.e., there is no coalescence or shattering
and on=ot þ oðn�ul;jÞ=oxj ¼ 0.

Eqs. (34), (62) and (64) can be reorganized into non-conservative and Lagrangian forms. The
species continuity equation becomes
�ql
dY l;n

dt
¼ �ql

oY l;n

ot
þ �ql�ul;j

oY l;n

oxj
¼ � _M ½�l;n � Y l;n� þ
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oxj

; n ¼ 1; . . . ;N ð67Þ
The averaged liquid-phase momentum equation in non-conservative and Lagrangian forms
becomes
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ð68Þ
The averaged liquid-phase energy equation in non-conservative or Lagrangian form is
�ql
d�hl
dt
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ð69Þ
The following relationships have been used: Leff ¼ Lþ _Ql= _M ¼ hhg;si � �hl þ _Ql= _M .
There is somewhat of a misnomer in describing this system as a Lagrangian system of equa-

tions. Normally in a Lagrangian tracking, we follow a fixed element of mass. (This in contrast
to an Eulerian calculation where we deal with a fixed volume.) The Lagrangian element normally
can change its volume and shape, changes of phase and chemistry can occur, and exchanges
of equal amounts of mass can occur with its environment can occur, but it remains the
amount of same mass. However, in the system of equations here, the averaging volume at each
instant of Lagrangian time will have the same magnitude and shape but the amount of mass in
this volume can change. It is better therefore in mathematical terms to describe this as a method
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of characteristics (Sirignano, 1999). Note that one could create a truly Lagrangian system for the
liquid-phase equations by making the vectors~x,~n, and~f in the averaging integration reflect initial
positions (rather than instantaneous positions) and thereby always identify the same points of
mass. The problem would come then with the match with the gas-phase equations, namely, the
averagings would not occur over the same field. So, in a true Lagrangian formulation, it would
be very difficult to sensibly describe exchanges of mass, momentum, and energy between the
phases. So, we remain with the pseudo-Lagrangian scheme that locally and instantaneously uses
a fixed volume for the averaging integration.

The number of droplets in the averaging volume can change in accordance with the droplet
number conservation equation. Written in Lagrangian form, that equation becomes
dn
dt

¼ �n
o�ul;j
oxj

ð70Þ
So, one approach to the calculations is to determine the varying droplet number density using Eq.
(70) and to relate _M to _m through the use of n as indicated by Eq. (66). Another approach, that
will also conserve droplet numbers, is to fix the number of droplets associated with each charac-
teristic path at the value given by an initial condition or inflow boundary condition.

An alternative analysis of the liquid properties could be developed following an approach pre-
sented by Sirignano (1999). The droplets could be separated into N* different classes based upon
their initial properties, e.g., diameter, velocity, or point of injection. A set of conservation equa-
tions (or evolution equations) could be developed for each droplet class. We will not provide the
details here.

It must be understood that the problem of a spray with rapidly vaporizing droplets in a high-
temperature gaseous environment requires more knowledge of the microstructure than is provided
by the above averaged liquid-phase equations. For example, the temporal and spatial variations
of temperature and composition in the liquid droplet must be resolved via modelling (Sirignano,
1999) for accurate prediction of heat and mass exchange between the phases. The internal fluid
motion of the droplet can affect the transport and must also be resolved by modelling. These mod-
els can be used to predict liquid temperature and composition in place of Eqs. (61) and (64) or
equivalently (67) and (69).
3. Importance of the various flux terms

3.1. Laminar microstructures

Let us now analyze the contribution of the gas-phase flux terms an,i, bn,i, Cij, D, and Ei. The
results will depend on the microstructure of the flow within the averaging volume. The flux terms
will also depend on the magnitude of the averaging volume and, through these terms and a few
other source terms in the equations, the size of the averaging volume will affect the averaged quan-
tities governed by the equations: e.g., q, ui, Yn, and h. In spectral terms, the larger the averaging
volume is, the larger is the minimum wavelength left unfiltered by the averaging. These terms are
known to be important in LES calculations where the averaging volume is larger than the smallest
turbulent eddies. We will focus at first here on cases where the smallest vortical eddies are larger
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than the averaging volume, so the microstructure is laminar. In the next subsection, we shall dis-
cuss the case where some eddies are smaller than the volume.

Some of these flux terms have been reported in the literature on two-phase flows and porous-
media flows. Zhang and Prosperetti (1994a,b) used multi-realization averages to treat disperse
flows without mass exchange between phases, viscosity, heat transfer, or compressibility. They
considered potential flow in the microstructure and used an expansion with 1� �h as the pertur-
bation parameter. The present analysis is different in that we consider the continuous fluid and
the disperse fluid to be multi-component, account for viscosity, heat transfer, and chemical reac-
tion, and allow the continuous flow density to vary due to compression (or expansion) and/or
heating (or cooling). Also, the perturbation expansion is not useful here because although the
gas volume is orders of magnitude larger than the liquid volume, the mass, momentum, and en-
ergy of the discrete liquid phase are of the same order of magnitude or not more than one order
less than the counterpart continuous gas properties. In a later paper, Zhang and Prosperetti (1997)
added the effects of heat conduction and viscosity but still did not allow compressibility, mass
exchange, chemical reaction, or multi-component character. They also advocate the use of parti-
cle equations for the discrete phase which track global characteristics of the particles without
requiring resolution of the microstructure of the discrete-fluid field. As noted earlier, these parti-
cle equations might ‘‘wash away’’ interesting physics for certain problems, e.g., rapidly vaporizing
droplets.

Early papers (Whitaker, 1966, 1967; Slattery, 1967) on flows through porous media employed
volume averaging to develop equations governing the hydrodynamics (e.g., Darcy�s law). Whi-
taker (1967) discusses the dispersion vector ai for a single, non-adsorbing, non-reacting species
in an incompressible porous flow. Later, Whitaker (1973) extended the transport equations to
consider multi-component diffusion, chemical reaction, and change of phase, the paper focused
on mass transfer and did not consider the coupling with the equations for momentum and energy
conservation. So, in addition to unifying the averaging methods for two-phase flows, LES anal-
yses, and practical computation, the current work does extend and strengthen the theoretical
foundations for two-phase flows.

The purpose here will not be to develop a general model for the microstructure but rather to
examine where these flux terms might have quantitative importance. So, we study here only a
few very simple descriptions of droplet arrays undergoing heat, momentum, and mass exchanges
with the gas. These model problems are intended to reflect the most essential physics and to help
determine roughly the magnitudes of these flux terms. They need not be the basis of further mod-
elling of these terms but can help to determine whether further consideration of these terms should
occur.

Let us consider a combustion application where liquid mass of fuel is injected at roughly stoi-
chiometric proportions into air at a pressure of O(10 atmospheres). Assume that droplet diame-
ters initially are in the range of 10–100 lm. Since the ratios of liquid density to air density and of
total air mass to total liquid mass are of O(100) and O(10), respectively, we can estimate that the
ratio of total initial liquid volume (before substantial vaporization has occurred) to total gas vol-
ume is O(1000). Then, the average spacing between neighboring droplets is O(10 diameters) or
100 lm to 1 mm. Three-dimensional computational fields are typically divided into O(105) to
O(107) computational cells. In a typical computation for a combustor that might have a charac-
teristic length of 10 cm to a meter, the computational cell would therefore have a corresponding
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dimension of 1 mm to a centimeter. So, a computational cell could have from O(1) to O(106) drop-
lets within it. As noted earlier, in order to optimize resolution, the averaging volume should have
the same order of magnitude as the computational cell volume. Clearly, at the lower end of this
range, a statistical sample of droplets will not exist in the volume over which the averaging occurs.
So, with only a few droplets in the volume, the averaged results become more sensitive to varia-
tions in specific locations and velocities of the droplets. With at least O(10–100) droplets in the
volume, we can have more confidence in our predictive capability for any specific realization.
So, in some cases, it might be desirable not to minimize the computational cell volume to the full
extent allowed by available computational resources. Rather, the cell volume could be chosen to
contain a sufficient number of droplets, then the smaller-scale physics could be modelled. Through
the use of reasonable models for droplet behavior (Sirignano, 1999) and sub-grid turbulent fluc-
tuations (Piomelli, 1999; Givi, 2003), the description of the physics can be extended to length
scales below those of the averaging volume and computational cell.

For simplicity, Fourier heat conduction, Fickian mass diffusion, and Newtonian viscosity will
be considered with the Prandtl number and Schmidt number to each have unity value. Note that
the particular fluxes under consideration are invariant under a Galilean transformation, so we will
use a reference frame moving with the cloud of droplets locally (all droplets in the averaging vol-
ume have the same velocity in this exercise) so that there is a steady or at least quasi-steady sit-
uation. We will examine two general cases: one case with a cloud of vaporizing droplets without
forced or natural convection but only Stefan convection and another case with relative motion
between the droplets in a cloud and the ambient gas.

In the first case with only Stefan convection, the product of gas density and velocity will be the
gradient of a potential function. It has been shown in several papers on arrays of vaporizing drop-
lets that the governing diffusive–advective equation can be transformed to Laplace�s equation, the
scalar quantity is an exponential function of the potential, and therefore the gradient of the scalar
is aligned locally to be parallel with the Stefan velocity (see Labowsky, 1980; Umemura et al.,
1981a,b; Imaoka and Sirignano, 2003, 2004). If the distribution of droplets with regard to size
and location is symmetrical over the averaging volume, the average Stefan velocity ui in the vol-
ume will be zero and the average of the scalar-velocity product will be zero since each droplet acts
as a monopole source for mass and as a monopole sink for heat. The same result occurs with the
diffusion velocity Vn,i. So, an,i, bn,i, and Ei would each be zero. However, asymmetrical droplet dis-
tribution over a finite averaging volume will make those averages different from zero. See, for
example, the simple asymmetrical situation sketched in Fig. 1. The magnitudes of these fluxes re-
mains to be determined but it is seen that, with significant asymmetry of the droplet distribution,
the scalar fluxes could become of the order of the product of the average scalar and the average
velocity. In that situation, the flux term can have importance.

Recent calculations (Imaoka and Sirignano, 2003, 2004) indicate that for two droplets (with
only Stefan convection) placed asymmetrically within a rectangular control volume, the an,i and
Ei flux terms will be less than 10% of the largest flux terms in the equation. The term Cij can
be significant for symmetric or asymmetric microstructural configurations. The quantity uiuj is
everywhere positive for i = j and thereby uiuj > 0. For a symmetric case, �ui ¼ 0, so, clearly Cij

can be significant in the momentum equation, i.e., Eq. (43).
In the second problem as portrayed in Fig. 2, we examine the wakes of an array of vaporizing

droplets. The linearized approach for slender axisymmetric far wakes described in many texts (see
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for example White, 1991) will be followed. The analysis is presented in Appendix A. The magni-
tude of C11 is found to be roughly a factor of O(10�2) to O(10�1) times the square of the average
velocity component in the range 10 < Re < 100. Therefore, it might be sufficiently important to
consider as a correction for laminar two-phase flows. For typical fuels and the conditions consid-
ered here, E1=ð�u�hÞ is possibly an O(10�1) quantity and aF;1=ð�u�hÞ is an O(10�1) or higher quantity.
So, they can be important corrections. More attention must be paid to the microstructure behav-
ior in order to have good predictions on a larger scale.

The D term depends on the pressure gradient. So, if that pressure gradient is balanced primarily
by the inertial term (spatial acceleration), it will differ from the thermal energy flux term such as
the divergence of Ei by a factor of the order of the square of the flow Mach number. If the pres-
sure gradient is balanced primarily by the local acceleration term in unsteady cases or by the vis-
cous stress term, we can expect the factor to be of the order of the Mach number. So, for the wide
range of cases where the flow in the microstructure is at low subsonic speeds, the D term should be
insignificant compared to other terms.

Each of these same flux terms discussed here for the gas phase has a counterpart in the liquid
phase. The discrete phase for sprays has the advantage that it is less difficult to model than the gas
phase. Models for heat and mass transport and internal fluid motion within droplets do exist in
the literature (see for example Sirignano, 1999). So, models for the five averaged flux terms could
be developed with some reasonable effort and would be an interesting future exercise. However,
because decent microscale models exist for the internal liquid behavior, another route for calcu-
lations has been followed. The internal velocity, temperature, and composition have been spatially
and temporally resolved by means that are not excessively computationally intensive. As a result,
Eqs. (61) and (64) or equivalently (67) and (69) can be bypassed. Instead, the models provide the
spatially resolved solutions for an average droplet, including, the properties on the droplet sur-
face. Still, in order to determine the trajectories of these average droplets, Eq. (63) or (68) must
be solved simultaneously with the equations of the model.

3.2. Vortex–droplet interactions

Sirignano (1972) predicted that the droplet (or particle) aerodynamic forces and the momentum
exchange associated with mass exchange (e.g., vaporization) caused the production of vorticity in
a two-phase flow. This occurs independently of whether or not unsteady boundary layers or wakes
are developed around the droplets. The existing DNS research clearly indicates that the presence
of particles or droplets affects the high wave number (small turbulent scale) end of the energy
spectrum. Therefore, the dissipation of turbulent kinetic energy can also be affected. There is also
evidence that the turbulence–particle interactions can create a less homogeneous situation on the
level of the microstructure. That is, an initially uniform distribution of particles (in terms of inter-
particle spacing) can be made highly non-uniform by the turbulence. These findings indicate that
there is good reason to pursue examination of the situation where the smallest turbulent scales can
be comparable to the droplet or particle scales. Also, the role of stratification within the micro-
structure is worthy of further examination.

The evaluation in the previous subsection considered a laminar flow on the scale of the micro-
structure. That is, any vortex structures were larger than the averaging volume. Now, we consider
briefly situations where the smallest vortex structure are on the scale of the droplet diameter or
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spacing. There has been some research on the interactions of small vortex structures with particles
and droplets based on the solutions of the Navier–Stokes equations (see Kim et al., 1995, 1997;
Masoudi and Sirignano, 1997, 1998, 2000). The indications are that significant modifications of
mass, momentum, and heat exchange can occur when a vortex collides with a particle or droplet.
The existing models for droplet drag, heating rate, and vaporization rate are built for laminar
microstructures and are inaccurate here. Kim et al. (1995, 1997) found that significant modifica-
tions in the droplet drag can occur due to the unsteady vortex/droplet interaction. They also
showed that the interaction between vortices and droplets causes the creation of lift and torque
on the droplet. Masoudi and Sirignano (2000) demonstrated significant modifications of the Sher-
wood number for a vaporizing droplet via interactions with vortices. The average vaporization rate
can be increased or decreased by a 10% or more factor. The algebraic sign of the modification de-
pends on the geometric relationship between the droplet and vortex (or vortices) and the direction
of vortical rotation. Masoudi and Sirignano (1998) showed that vortex–solid particle interactions
can have especially significant modification of the Nusselt number when the gas temperature is spa-
tially non-uniform. So, it can be strongly suspected that, for a vaporizing droplet, the non-uniform
vapor concentration in the gas surrounding a droplet in synergism with a vortex (or vortices) will
substantially increase the magnitude of the difference between vaporization rate for axisymmetric
droplet situations and the rate for a droplet interacting with a vortex (or vortices). The works of
Kim et al. and Masoudi and Sirignano provide various correlations for aerodynamic coefficients
and Nusselt and Sherwood numbers that can be applied as a first approximation for sub-grid mod-
elling to describe droplet interactions with the smallest vortices. A correlation, for example, is given
between Sherwood number and a function of vortex circulation strength, droplet Reynolds num-
ber, and distance between droplet and vortex trajectories. The correlations apply to only specific
configurations, however. In summary therefore, new models for a wider range of configurations
are definitely needed to predict the droplet aerodynamic force Fi and the vaporization rate _m for
two-phase LES calculations where vortices are sized at the magnitude of the droplet scale.

The gas-phase flux terms an,i, bn,i, Cij, and Ei are well known to be important in single-phase
LES calculations. Models of these terms can be found in the literature. Here, we have shown
the importance of these terms for two-phase laminar or turbulent flows. There is good reason
to assume that the proper flux models for two-phase, turbulent microstructure should be different
from models that apply to single-phase turbulent flows or from models for laminar two-phase
flows. It is expected that the model for viscous dissipation U will differ for two-phase flows since
Ferrante and Elghobashi (2003) and others have shown that the high wavenumber end of the en-
ergy spectrum is affected by the presence of particles. As noted above, several researchers have
found that, contrary to intuition about mixing, turbulence can make the distribution of inter-
droplet spacing highly non-uniform. This can increase the degree of spacial variation of the prop-
erties within the microstructure and cause terms related to the differences between averages of
products and products of averages to be quite significant quantitatively.
4. Concluding remarks

The volume-averaging process for spray flows has been formulated and evaluated. While the
motivation for this analysis has been spray flows, the theoretical foundations apply to a very wide
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range of laminar and turbulent multi-phase systems where the microstructure cannot be fully re-
solved and averaging is required. The optimization of the relationship between the volume used in
the averaging process and the volume associated with numerical discretization of the partial dif-
ferential equations has been discussed. Averaging methodology for LES and for two-phase flow
have been unified at the most fundamental level; this is a unique aspect of this approach which
avoids two sequential averaging processes. The value of the consistency between volumes over
which averages are made and computational-cell volumes have been noted. Furthermore, the
complicating effects of spatial variation of the size, shape, and/or orientation of the averaging vol-
ume has been shown. However, substantially more work on microstructure (sub-grid) modelling is
required. Evidence has been provided for the importance of the flux terms an,i, bn,i, Cij, and Ei in
the equations governing the spray flow. The need for further attention to the modelling of those
terms has been indicated. In particular, the situation must be further analyzed where the smallest
turbulent scales are of the same order or smaller than the average distance between neighboring
droplets; the significance of the effects of droplet collisions with small vortices on the exchange
rates for mass, momentum, and energy have been indicated. The pressure work terms Sl,* and
S* have been identified and explained. The averaged partial differential equations for the gas-
phase properties and for the liquid-phase properties in a vaporizing, multi-component, reacting
gas flow has been formulated with several new flux terms and a new work term. Evolution equa-
tions for averaged entropy and averaged vorticity have been advanced. The difference between the
curl of the average velocity and the average of the velocity curl has been identified and related to
the rotation of the discrete particles or droplets. The liquid-phase equations have also been pre-
sented in a ‘‘Lagrangian’’ form and some subtleties about the implications of that form have been
discussed.
Appendix A. Droplet wake analysis

Each droplet in an array within the averaging volume has a wake; it is considered that droplet
spacing is sufficient to neglect the interaction of any wake with another wake or droplet. The
microstructure here is analyzed using the primitive equations first and then averaging the results.
The common free-stream velocity is U0 in a frame of reference moving with the droplet and the
Reynolds number (Re) value is appropriate for laminar boundary layer to apply. For velocity de-
fect u1 = U0 � u� U0, where u is the actual velocity after the Galilean transformation, a linear
theory (White, 1991) yields the result
u1
U 0

¼ CDRe
8x=R

exp �U 0r2

4mx

� �
ðA:1Þ
where r, x, R, CD, and m are the streamwise coordinate, the radial coordinate in the cylindrical
scheme, the droplet radius, the droplet drag coefficient, and the kinematic viscosity, respectively.
We neglect here, within the first approximation, momentum exchange between the droplet and gas
due to mass exchange. Under the assumptions that specific heat cp is constant, Schmidt number
Sc = 1 and Prandtl number Pr = 1, we have for the temperature defect T1 and the fuel vapor mass
fraction YF that
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and
Y F ¼ _m
4pqmx

exp �U 0r2
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� �
ðA:3Þ
where the pre-exponential terms are determined by integrating the profile over the cross-sectional
area to obtain the total energy (or species mass) flux and matching to the energy (or mass) ex-
change rate with the droplet.

The results from the linear theory for each droplet can be summed to give the results for a drop-
let array, including the effects of some overlap of the expanding wakes. With CDRe = O(10), the
wake will extend downstream about 100 droplet diameters or about 10 droplet spacings. The com-
mon free stream velocity for droplets in the array assures that the axisymmetric wake centerlines
for the various droplets are parallel. So, the average lateral spacing between wake centerlines for
adjacent wakes is O(101/2) droplet diameters. This means that the cross-sectional area A of air
flow ‘‘assigned’’ to each droplet is about 10 square diameters. The e-folding radius of the widening
wake given by Eq. (A.1) at 100 diameters downstream is about 1.4 droplet diameters at Re = 100
and about 4.5 diameters at Re = 10. The probability of one droplet to be centered in the wake of
another droplet is sufficiently small that we will neglect it.

Now, we seek the average values over the volume. For this linearized problem, the first approx-
imation uses a uniform density so that there is no difference between a volume-weighted average
and a mass-weighted average. Note that the integrations of Eqs. (A.1)–(A.3) over a cross-section
orthogonal to the flow direction x give results that are independent of x. So, it immediately gives
the volume average as well as the cross-sectional average following division by the cross-sectional
area. The average quantities and the perturbations from the averages are
�u ¼ U 0 1� pR2

A
CD

2
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Note that with the given spacing the quantity pR2/A is O(10�1). Neglecting terms of O((pR2/A)2),
we can show that
C11

�u�u
¼ � u0u0

U 0U 0

¼ �C2
D

32

pR2

A
Re

logðL=RÞ
L=R

ðA:7Þ
where L is the wake length over which integration has occurred. x/R = O(1) is the approximate
length to the point where the velocity deficit is of O(U0); we begin our integration there. We nor-
malize the quantity so that the average of the product can easily be compared to the product of
the averages. The normalized C11 is estimated to be roughly between O(10�2) and O(10�1) in the
range 10 < Re < 100. So, it can be a modest-to-significant correction for laminar two-phase flows.

Similarly, we can show that E1 and aF,1 might be significant compared to other terms in the
energy and species continuity equations or, equivalently, the normalized quantities can be
O(10�1) or higher. The results to the same order of accuracy as cited for Eq. (A.7) are
E1

�u�h
¼ � u0T 0

U 0T 0

¼ � 2 _mLeff

pR2qU 0cpT 0CD

u0u0

U 2
0

ðA:8Þ
and
aF;1
�uY F

¼ � u0Y 0
F

U 0Y F

¼ 2

CD

A

pR2

u0u0

U 2
0

ðA:9Þ
For typical fuels and the conditions cited above, we can estimate the coefficients in these last two
equations. E1=ð�uhÞ is usually somewhat larger in magnitude than u0u0=U 2

0 and can be an O(10�1)
quantity. aF;1=ð�uY FÞ has even larger magnitude and should be considered as an O(10�1) or higher
quantity. So, their importance is demonstrated.
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